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Introduction

Since the advent of inexpensive processing power, the general engineering community has
had opportunity to apply digital filtering techniques to signal processing applications. Filter
functions that were not realizable in analog implementations came into practicality. Filters with
very steep cutoffs or very narrow notches could be realized by software implementations. An
amazing amount of signal to noise improvement became attainable with systems having
spectrally separated and unique signal components. As digital filtering became more and
more popular, unique integrated circuit chipsets and processors were developed to provide
high speed, compact implementations. Complementary design tools were developed to
speed development time and simplify the necessary software coding requirements.

However, this new tool still requires an understanding and some expertise in  mathematics,
most notably of Fourier and Laplace transforms. The progress in personal computer software
tools has reduced the need to manipulate the mathematics symbolically. This makes
application of software driven digital filters a straightforward number crunching task in most
cases. Yet it is still crucial for the designer to understand the principles at work. The designer
should know the basic principles behind filters, FFT=s and numerical processes.

Medical products require a broad range of signal processing requirements. Generally
speaking, medical analyzers present some of the most interesting and rigorous design
challenges in the signal processing arena. Most diagnostic devices are based upon
instrumentation of one form or another. In the development of the majority of that type of
instrumentation, the goal is to maximize signal to noise ratio. Interference from AC power,
motors, and such can dramatically reduce the ability of low cost equipment to achieve its best
performance. Digital filtering can provide a low cost solution to reducing noise beyond what
can be achieved with typical analog solutions. This article provides the reader with a basic
introduction to digital filters and provides a simple tool to allow the reader to explore these
fascinating tools in greater detail.

Basics

In general, the need for filtering arises when the signal of interest is mixed with interfering 
signals or noise. Almost all noise or sources of interference can be analyzed from the
frequency domain perspective. In order to determine which filter type and characteristics are
required for any particular application, the spectral characteristics of the signal and its noise
(or interfering components) is necessary. The designer must then define the required output
SNR (signal to noise ratio), response time, overshoot and other parameters as may be
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deemed significant to the application. When that is complete, the filtering requirements can
be established and a detailed design can commence.

In the past, analog filters were the primary means to performing the necessary filtering to
separate the signal from the noise components. In some cases, the design of multi-pole
analog filters required a number of relatively large components to achieve the required degree
of filtering. The resulting filter was susceptible to minor variations in component values and
often required additional amplifiers to perform buffering. The stability of these amplifiers
required a reasonable degree of analysis which might be offset using cookbook designs and
simulation software. Sharp filter functions were expensive and time consuming to implement.
Predicting the response of these filters to all variations and scenarios was difficult and time
consuming. Amplifiers saturated, inductors saturated, and capacitors exhibited dielectric
absorption to name a few of the ill=s that analog designers had to deal with. The reader must
be fully aware that with digital filters, the basic concepts behind these problems have not
changed and they now plague the digital engineer too.

Digital Filters - General Form

Figure 1 shows the basic structure for a general purpose digital filter. The structure is
composed of Z-domain delay blocks, gain stages and summing junctions. Observation of this
structure shows how the filter processing each input sample as well as the output. Each time
the system samples the input, the top half of the system takes previous input samples and
shifts them down the chain of Z-1 blocks. Thus the system Aremembers@ a fixed series of past
input values. Each past value and the present input value is multiplied by a fixed coefficient.
These terms are summed up to create the filter output.

The lower half of the diagram shows how the filter can also use the current output value as well
as Aremember@ past output values. These values are also multiplied by fixed coefficients and
summed to add into the current output value.

In general, each Z-1 element in the filter structure creates a pole in the response. As noted in
the figure, an FIR (Finite Impulse Response) filter will have some or all Ab@ terms but will not
use any Aa@ terms. An IIR (Infinite Impulse Response) filter will have Aa@ terms but may not have
some of the Ab@ terms (it must have at least one, usually b0). There can be much debate
regarding the appropriateness of each type of filter. For the purposes of this article, it is more
important to notice that an FIR filter uses memory to recall past inputs and integrate them with
a specific weighting function (i.e. the Ab@ terms). Thus an FIR uses no feedback, is inherently
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stable and will not oscillate. On the other hand, an IIR filter provides feedback via non-zero
values for the Aa@ terms (b terms may or may not be present). This allows the potential for
oscillation and thus such filters are not inherently stable.

The choice of an FIR design versus an IIR can spark much debate among designers. It is the
opinion of the author that new users of digital filters should start out with FIR type filters. This
is recommend for the following reasons:

$ FIR filters can easily be designed for constant phase delay and/or constant group
delay (which affects the distortion of pass band signals with broadband characteristics)

$ Stability is inherent and limit cycling is not a problem as it is with IIR designs (This is
provided the User implements the filter with nonrecursive techniques).

$ Round off errors can be controlled in a straightforward fashion in order to keep their
effects insignificant.
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Z-1 = Unit Time delay (sampling delay)
ax, bx = simple gain blocks

For an FIR filter, all ax terms are zero.
For an IIR filter, some or all bx terms may be zero.
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The drawbacks of using an FIR are:

$ An FIR generally requires more stages than an IIR to obtain sharp filter bands.

$ Additional stages add to memory requirements and slow processing speed.

Designs that demand high performance usually justify an effort to tradeoff FIR vs IIR filter
implementations. But for first time application it is recommended that aggressive filter design
be avoided until one has the experience to avoid the various pitfalls that await you.

Mathematically, the equation representing the general filter in Figure 1 is:

                             m                           m

 yi = 3 bn * xn + 3 an * yn                                   Equation #1
                           n=0                        n=1

Where: x0 = current input value
y0 = current output value
m = number of filter stages or taps

(Z-1 sections)

Equation #1 is straightforward to implement in software or even a speadsheet. As an example,
an FIR filter (lowpass, high pass or bandpass) would be constructed as follows:

1. Determine how many poles are needed and how much ripple in the pass band is
allowed and how much attenuation in the stop band(s) is required.

2. From this information, compute the coefficients necessary.

3. Setup your software as follows:
a. Create an array to hold the incoming input values as a sequence of inputs.
Create a matching array to hold the coefficients.

b. Set up a software mechanism to add incoming input values to the Ax@ array.
A circular buffer works well for this purpose.

c. Set up a function to multiply the current input array by the matching array of
coefficients and to then sum the result. That result is the output of your filter.
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Whether you are performing real-time processing or off line processing, the process is
essentially the same. Using a circular buffer is an important means to saving computational
time. Without some sort of circular buffer, you must shift the array of input values on each input
or you must shift the coefficients. This shifting can be time consuming and may be time
reduced dramatically by a circular buffer technique.

Figure 2 shows an example lowpass filter. The filter was designed using the Remez Exchange
Algorithm to generate the coefficients (explanation of this algorithm is given the following
paragraphs). The input signal to the filter was created by combining two sine waves (one near
the edge of the passband and one just outside the pass band). Random noise was added to
the sine waves. The noise added is uniform in spectrum and thus a portion of the noise power
overlaps the passband signals. Thus the filter output still shows some low frequency
components riding on the sine wave. This noise could be further reduced by use of a
bandpass configuration as would be appropriate in a strictly analog implementation.

It should be apparent at this point that the whole key to these filters is understanding how to
generate the coefficients. Implementing the filter itself becomes a small task compared to the
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Input Signal To Filter Output Signal From Filter

Input Signal Composition

1 Sinewave at 0.04 Fs  (Fs = Sample Frequency)
1 Sinewave at 0.15 Fs
Random noise, uniform distribution,
   (rms amplitude = 1)

Filter Characteristics

Passband Ends at = 0.05 Fs
Stopband Starts at = 0.15 Fs
Stopband Attenuation = 30bD (min)
Passband Ripple = 0.1dB (max)
17 Terms or taps

Lowpass Filter Example
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mathematics to generate the coefficients.

Computing The Coefficients

Generating the coefficients for these filters is far and away the toughest part of filter design
from a mathematical standpoint. The complexity of generating these coefficients is driven by
the criteria for obtaining specific pass band, stop band and ripple requirements. While a
number of software programs are available to reduce this process to cookbook level, it is
important to understand the principles and processes at work. A general observation of the
filter structure shown in Figure 1 should bring to mind the basic convolution process. If one
views the filter coefficients as a reverse ordering of the filters impulse response, then it
becomes obvious that these filters are simply a discrete embodiment of the convolution of the
filters impulse response against the incoming time domain signal. Thus one can view the
algorithms for generating the coefficients simply as tools that generate an array of impulse
response values whose Fourier Transform represents the desired filter function.

A derivation or detailed explanation of the mathematics for the various approaches will not be
presented here. The reader is encouraged to review the text in reference [2] for specific detail
and description of the mathematics for the described approaches.

Three popular basic approaches for coefficient generation are employed by filter designers:
the Fourier Series Method, the Frequency Sampling Method, and the Remez Exchange
Method. The Fourier Series Method is based upon direct computation of Fourier series
coefficients given a selection of the desired start and stop frequencies. These coefficients are
computed using the following equation:
 

        bn =  (1/(2p) I K(f)[ cos(mf) + j sin(mf)] df              Equation #2
                                          2p

Where: n = index of coefficient being computed
f = the frequency currently being computed
K(f) = filter gain at frequency f
m = n - (N-1)/2
N = number of filter stages or taps

Note that m is setup to compute only half the number of coefficients as there are taps. This is
because the coefficients will be symmetric and will generate a symmetrical impulse response.
For example, a 10 tap system will have the following arrangement:
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b0 = b9

b1 = b8

b2 = b7

b3 = b6

b4 = b5

If an odd number of taps are specified then the system will be symmetric around the center
most tap. For an 11 tap system this would mean b0 = b10, and b5 would be the only uniquely
assigned value.

The basic steps to compute the coefficients, bn, are as follows:

1. Specify the desired filter attenuation at each frequency, i.e. the K(f) coefficients.
2. Specify the number of taps or stages, N.
3. Compute each coefficient per equation #1.

Some iteration may be required to determine the appropriate number of taps based upon the
resulting filter step response and/or its frequency response (obtained via an FFT or its impulse
response).

Filters designed using Fourier Series Method tend to have linear phase characteristics. As
with almost all filter implementations, the filter will exhibit undershoot and overshoot due to the
Gibbs phenomena. This arises due to the finite structure of the digital computations as
opposed to a continuous system. The impact of this effect may be reduced by a technique
called Awindowing@. This involves multiplying the coefficients by a series of coefficients
designed to modify the frequency response in order to adjust for the finite aspect of the
transforms taking place. While it is beyond the scope of this article to detail out these
functions, it is recommended that the reference material be reviewed for information relating
to the various window types: rectangular, triangle, Hanning, and Hamming. The primary
tradeoff between each windowing technique is whether or not the application requires
smoother frequency response for phase or magnitude.
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Another technique used to generate coefficients is to utilize a discrete Fourier Transform.  In
this technique, the designer generates points that represent the desired frequency domain
magnitude and phase response desired. The resulting data set is processed via a standard
inverse discrete Fourier Transform. This produces impulse response values similar to the
Series Method. These values are utilized in the same manner. The primary  difference is that
the designer must (or can) specify magnitude and phase in this technique. This technique is
not recommended for those not familiar with Fourier Transforms and the effects of magnitude
and phase point placement on the resulting transform. The choice of point placement can be
quite important in this method and is one that can produce significant changes in results from
subtle changes on the inputs.

The third technique is called the Remez Exchange Method. This algorithm utilizes inputs from
the designer for start/stop frequency, allowed passband ripple, and minimum required stop
band attenuation. The algorithm then attempts to find an optimal solution of coefficients to
meet the given criteria. The mathematics of this algorithm are explained in a reasonably clear
fashion in reference [2] and will not be covered here. A number of software packages are
available that perform the necessary computations which make this approach attractive as an
almost Acookbook@ solution to generation of coefficients. Depending upon the specific
implementation of this algorithm, the usual criteria coded into the algorithm produces
Chebyshev filter approximations.

Additional Functions That Affect The Digital Filter

A digital filter is only one part of a system composed of a digitizer (A/D), processing device
(e.g. microprocessor) and algorithm. The digitizer has a profound effect on the filtering function
via three primary characteristics: quantizing error, sample rate and bandwidth limiting.
Quantizing error is simply the number of bits the A/D uses for quantization. Determining the
required number of bits is usually governed by the system resolution requirements (i.e. a
2.4mV change in the signal is required to be detectable). With regard to the digital filter, it is
difficult to remove quantization noise without undue effort or a priori and fixed frequency
characteristics of the signal and noise. Thus quantization size must be chosen to be
compatible with the desired filter output SNR.

The sample rate of the A/D is a key parameter for a digital filter. The basis of setting the
coefficients for almost all digital filters is an assumption of the sample rate. Changing the
sample rate will directly scale the coefficients. A filter you thought filtered at 60Hz will not do
so if the sample rate changes. This is a one to one relationship. Thus, you can determine the
effects of varying sample rate by the ratio of change from the design specification frequency
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to the actual rate. The resulting filter frequency is scaled by the same ratio.

Jitter or short term variation of the sample frequency can create very undesirable effects on
the filter performance. Simply think of it as the filter breakpoint frequencies shifting around in
real time. This can be a significant problem for narrowband or sharp cutoff filters where the
signal of interest lies very close if not within these filter bands.

The anti-alias filter is perhaps the most crucial addition to the input of the A/D and to the digital
filter. Without an analog filter to perform this function, high frequency interference can show up
in the digitized data as a low frequency signal. Those familiar with sampling theory will know
this as frequency folding or aliasing. Once aliasing occurs, it is very difficult if not impossible
to remove the high frequency components that folded back into the sampled bandwidth. By
adding an analog filter that limits the A/D input bandwidth to one half the sample rate, aliasing
can be reduced or prevented. Most applications use a simple analog RC filter to perform this
function. The reader should be aware that this filter does not roll off very quickly and thus large
amplitude interference above the cutoff frequency can and will still enter the system and be
folded back into the sampling bandwidth. Higher order analog filters are still required where
this situation is possible to occur.

The processor chosen for the task plays an important role in a number of ways. The most
obvious is the processor=s math function capabilities. Digital filters inherently are composed
of repetitive multiplication and addition operations. More over, round off errors can accumulate
quickly. Hence, most software applications utilize floating point variables to reduce round off
error accumulation (some require double precision for high accuracy applications). Floating
point multiplication’s generally consume large quantities of processor time unless a math
coprocessor is present. This can prevent the processor from performing real-time processing
if it interferes with maintaining a uniform sample rate. Thus processor speed and capability
are important parameters in the implementation of a digital filter.

Summary

Digital filters can be a valuable tool in an engineer=s tool box. Properly applied, SNR
improvements can be achieved that surpass those attained by analog techniques. Yet one can
not simply throw a digital solution in place without understanding the underlying principles and
concepts. Thus if digital engineers are to utilize these techniques, they had better be prepared
to become versed in the mathematics that used to be reserved for analog engineers.

As a courtesy to those readers interested, a Acookbook@ software package to compute filter
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coefficients using the Remez Exchange Algorithm is available, free of charge from the author.
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